Enhancing Industrial Security with IoT-based Passive Intrusion Detection and Segmentation

Author:

Arunkumar SORCID,Gowtham M.SORCID,Revathi NORCID,Krishnaprasath V.TORCID

Abstract

Introduction: passive intrusion detection in industrial environments can be challenging, especially when the area being monitored is vast. However, with the advent of IoT technology, it is possible to deploy sensors and devices that can help with mass segmentation of passive intrusion. Hence, this approach deploys ML (Machine Learning) algorithm as improvised (Convolutional Neural Network) CNN support for identifying and avoid illegal access to critical areas in real time, ultimately improving security and safety in industrial environments. Methods: in turn the proposed algorithm can detect patterns and anomalies that could indicate a passive intrusion. In order to discover the patterns and connections between the various sensor data points, DL (Deep Learning) techniques like CNNs, Recurrent Neural Networks (RNNs), and Autoencoders (AE) may be trained on massive datasets of sensor data. Results: then, the robust technique DL (Deep Learning) can be utilized for ID (Intrusion Detection) the industrialized settings, when specifically combined with other IoT devices like sensors and alert systems. Thus, the model is trained and tested. Finally, it achieved 98,51 % and 94,85 % accuracy accordingly. Conclusion: these frameworks after the completing training phase can be employed for the novel sensor data’s actual analysis and also for the anomalies detection as it reveals a potential ID.

Publisher

Salud, Ciencia y Tecnologia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3