Brain tumour detection via EfficientDet and classification with DynaQ-GNN-LSTM

Author:

Agrawal AyeshaORCID,Maan VinodORCID

Abstract

The early detection and accurate staging of brain tumors are critical for effective treatment strategies and improving patient outcomes. Existing methods for brain tumor classification often struggle with limitations such as suboptimal precision, accuracy, and recall rates, alongside significant delays in processing. The current methodologies in brain tumor classification frequently encounter issues such as inadequate feature extraction capabilities and limited accuracy in segmentation, which impede their effectiveness. To address these challenges, the proposed model integrates Fuzzy C-Means for segmentation, leveraging its ability to enhance the accuracy in distinguishing tumor regions. Bounding boxes surrounding identified tumour regions are produced by the method by efficiently utilising calculated region attributes. The use of Vision Transformers for feature extraction marks a significant advancement, offering a more nuanced analysis of the intricate patterns within brain imaging data samples. These features are then classified using a Dyna Q Graph LSTM (DynaQ-GNN-LSTM), a cutting-edge approach that combines the strengths of deep learning, reinforcement learning, and graph neural networks. The superiority of the proposed model is evident through its performance on multiple datasets. It demonstrates an 8,3 % increase in precision, 8,5 % increase in accuracy, 4,9 % increase in recall and 4,5 % increase in specificity, alongside 2,9 % reduction in delay compared to existing methods. In conclusion, the proposed method offers an efficient solution to the challenges faced in brain tumor classification. The study's findings underscore the transformative impact of integrating cutting-edge technologies in medical diagnostics, paving the way for more accurate, and timely health interventions for clinical scenarios

Publisher

Salud, Ciencia y Tecnologia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3