Novel Approach to Intrusion Detection: Introducing GAN-MSCNN-BILSTM with LIME Predictions

Author:

BENCHAMA Asmaa,ZEBBARA Khalid

Abstract

This paper introduces an innovative intrusion detection system that harnesses Generative Adversarial Networks (GANs), Multi-Scale Convolutional Neural Networks (MSCNNs), and Bidirectional Long Short-Term Memory (BiLSTM) networks, supplemented by Local Interpretable Model-Agnostic Explanations (LIME) for interpretability. Employing a GAN, the system generates realistic network traffic data, encompassing both normal and attack patterns. This synthesized data is then fed into an MSCNN-BiLSTM architecture for intrusion detection. The MSCNN layer extracts features from the network traffic data at different scales, while the BiLSTM layer captures temporal dependencies within the traffic sequences. Integration of LIME allows for explaining the model's decisions. Evaluation on the Hogzilla dataset, a standard benchmark, showcases an impressive accuracy of 99,16 % for multi-class classification and 99,10 % for binary classification, while ensuring interpretability through LIME. This fusion of deep learning and interpretability presents a promising avenue for enhancing intrusion detection systems by improving transparency and decision support in network security

Publisher

Salud, Ciencia y Tecnologia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3