GAN-based E-D Network to Dehaze Satellite Images

Author:

Sudhamalla MalleshORCID,D HaripriyaORCID

Abstract

The intricate nature of remote sensing image dehazing poses a formidable challenge due to its multifaceted characteristics. Considered as a preliminary step for advanced remote sensing image tasks, haze removal becomes crucial. A novel approach is introduced with the objective of dehazing an image employing an encoder-decoder architecture embedded in a generative adversarial network (GAN). This innovative model systematically captures low-frequency information in the initial phase and subsequently assimilates high-frequency details from the remote sensing image. Incorporating a skip connection within the network serves the purpose of preventing information loss. To enhance the learning capability and assimilate more valuable insights, an additional component, the multi-scale attention module, is introduced. Drawing inspiration from multi-scale networks, an enhanced module is meticulously designed and incorporated at the network's conclusion. This augmentation methodology aims to further enhance the dehazing capabilities by assimilating context information across various scales. The material for fine-tuning the dehazing algorithm has been obtained from the RICE-I dataset that serves as the testing ground for a comprehensive comparison between our proposed method and other two alternative approaches. The experimental results distinctly showcase the superior efficacy of our method, both in qualitative and quantitative terms. Our proposed methodology performed better with respect to contemporary dehazing techniques in terms of PSNR and SSIM although it requires longer simulation times. So it could be concluded that we contributed a more comprehensive RS picture dehazing methodology to the existing dehazing methodology literature.

Publisher

Salud, Ciencia y Tecnologia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3