Abstract
Fetal electrocardiograms (ECG) provide crucial information for the interventions and diagnoses of pregnant women at the clinical level. Maternal signals are robust, making retrieval and detection of Fetal ECGs difficult. In this article, we propose a solution based on Machine Learning by adapting the k-means clustering to detect the fetal ECG by recording the ECGs. In our first preprocessing part, we tried normalized and segmented ECG waveform. Next, we used the Euclidean distance to measure similarity. To identify a certain number of centroids in our data, the results classified into two classes are represented in the last part through graphs and compared with other algorithms, such as the CNN classifier, to demonstrate the effectiveness of this innovative approach, which can be deployed in real-time
Publisher
Salud, Ciencia y Tecnologia
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning in Fetal Health: Improving ECG Analysis with Random Forest;2024 International Conference on Circuit, Systems and Communication (ICCSC);2024-06-28