Enhancing Energy Efficiency in Cluster Based WSN using Grey Wolf Optimization

Author:

Rai Ashok Kumar,Tyagi Lalit Kumar,Kumar Anoop,Srivastava Swapnita,Fatima Naushen

Abstract

Wireless sensor networks (WSNs) are typically made up of small, low-power sensor nodes (SNs) equipped with capability for wireless communication, processing, and sensing. These nodes collaborate with each other to form a self-organizing network. They can collect data from their surrounding environment, such as temperature, humidity, light intensity, or motion, and transmit it to a central base station (BS) or gateway for additional processing and analysis. LEACH and TSEP are examples of cluster-based protocols developed for WSNs. These protocols require careful design and optimization of CH selection algorithms, considering factors such as energy consumption, network scalability, data aggregation, load balancing, fault tolerance, and adaptability to dynamic network conditions. Various research efforts have been made to develop efficient CH selection algorithms in WSNs, considering these challenges and trade-offs. In this paper, the Grey Wolf Optimization (GWO) algorithm is employed to address the problem of selecting CHs (CHs) in WSNs. The proposed approach takes into account two parameters: Residual Energy (RE) and the distance of node (DS)s from the BS. By visualizing and analyzing the GWO algorithm under variable parameters in WSNs, this research identifies the most appropriate node from all normal nodes for CH selection. The experimental results demonstrate that the proposed model, utilizing GWO, outperforms other approaches in terms of performance.

Publisher

Ediciones Universidad de Salamanca

Subject

Information Systems,Computer Science Applications,Computer Networks and Communications,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Case Study:A Comparative Survey on Wireless Sensor Networks;2023 International Conference on Power Energy, Environment & Intelligent Control (PEEIC);2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3