A Hybrid System For Pandemic Evolution Prediction

Author:

Muñoz LiliaORCID,Alonso-García MaríaORCID,Villarreal VladimirORCID,Hernández GuillermoORCID,Nielsen MelORCID,Pinto-Santos FranciscoORCID,Saavedra AmilkarORCID,Areiza MarianaORCID,Montenegro JuanORCID,Sittón-Candanedo InésORCID,Caballero-González YenORCID,Trabelsi Saber,Corchado Juan M.ORCID

Abstract

The areas of data science and data engineering have experienced strong advances in recent years. This has had a particular impact in areas such as healthcare, where, as a result of the pandemic caused by the COVID-19 virus, technological development has accelerated. This has led to a need to produce solutions that enable the collection, integration and efficient use of information for decision making scenarios. This is evidenced by the proliferation of monitoring, data collection, analysis, and prediction systems aimed at controlling the pandemic. This article proposes a hybrid model that combines the dynamics of epidemiological processes with the predictive capabilities of artificial neural networks to go beyond the prediction of the first ones. In addition, the system allows for the introduction of additional information through an expert system, thus allowing the incorporation of additional hypotheses on the adoption of containment measures.    

Publisher

Ediciones Universidad de Salamanca

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3