Ensemble Boosted Tree based Mammogram image classification using Texture features and extracted smart features of Deep Neural Network

Author:

Sharma Bhanu Prakash,Purwar Ravindra Kumar

Abstract

    This work proposes a technique of breast cancer detection from mammogram images. It is a multistage process which classifies the mammogram images into benign or malignant category. During preprocessing, images of Mammographic Image Analysis Society (MIAS) database are passed through a couple of filters for noise removal, thresholding and cropping techniques to extract the region of interest, followed by augmentation process on database to enhance its size. Features from Deep Convolution Neural Network (DCNN) are merged with texture features to form final feature vector. Using transfer learning, deep features are extracted from a modified DCNN, whose training is performed on 69% of randomly selected images of database from both categories. Features of Grey Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP) are merged to form texture features. Mean and variance of four parameters (contrast, correlation, homogeneity and entropy) of GLCM are computed in four angular directions, at ten distances. Ensemble Boosted Tree classifier using five-fold cross-validation mode, achieved an accuracy, sensitivity, specificity of 98.8%, 100% and 92.55% respectively on this feature vector.

Publisher

Ediciones Universidad de Salamanca

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer-Aided Detection and Diagnosis of Breast Cancer: a Review;ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal;2024-06-05

2. Graffiti Identification System Using Low-Cost Sensors;International Journal of Interactive Multimedia and Artificial Intelligence;2023

3. Deep Learning-Based Code Auto-Completion for Distributed Applications;Distributed Computing and Artificial Intelligence, 19th International Conference;2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3