Ulises: A Agent-Based System For Timbre Classification

Author:

Teixeira Eduardo Porto,Goncalves Eder M. N.,Adamatti Diana F.

Abstract

The Sound and Music Computing (SMC) field has grown over the years and every time there are more conferences and specialized researchers in this area. The sub-field of Music Information Retrieval (MIR), one of the main research fields on SMC has focused on getting information from sound data. The most critical issue with regard to the human perception of sound is: what are the qualities of musical instrument sounds to perform recognition of its sound sources. There are four main sound dimensions: pitch, loudness, duration and timbre. The fourth dimension, timbre, is the most vague and complex dimension, a complex and high-level multidimensional property. Recognition of timbres is an area of high interest within MIR, being present in several papers state of the art on SMC. About Multi-Agent Systems (MAS), the term autonomous refers to the fact that the agents have their own existence, regardless of the existence of other agents, and are able to take own decisions without outside interference. Agents technology is particularly suitable for musical applications because of the possibility of associating a computational agent with the role of a singer or instrumentalist as can be seen in works state of art in SMC area. In this context, this paper proposes a agent-based approach to timbre recognition, focusing on the parallelization of the classification model. For this, we assign a method of recognition of timbres to different agents, where each agent is a specialized entity in a particular timbre, characteristic of a specific instrument, seeking a distributed solution for solving the timbre recognition problem.

Publisher

Ediciones Universidad de Salamanca

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An IoT-Based ROUV for Environmental Monitoring;Advances in Intelligent Systems and Computing;2020-09-10

2. An Agent-Based Model for Optimal Voltage Control and Power Quality by Electrical Vehicles in Smart Grids;Advances in Intelligent Systems and Computing;2019

3. A Data Mining Approach Applied to Wireless Sensor Neworks in Greenhouses;Advances in Intelligent Systems and Computing;2019

4. An Agent-Based Model for Energy Management of Smart Home: Residences’ Satisfaction Approach;Advances in Intelligent Systems and Computing;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3