An Intelligent Multi-Resolutional and Rotational Invariant Texture Descriptor for Image Retrieval Systems

Author:

Dhingra Shefali,Bansal Poonam

Abstract

To find out the identical or comparable images from the large rotated databases with higher retrieval accuracy and lesser time is the challenging task in Content based Image Retrieval systems (CBIR). Considering this problem, an intelligent and efficient technique is proposed for texture based images. In this method, firstly a new joint feature vector is created which inherits the properties of Local binary pattern (LBP) which has steadiness regarding changes in illumination and rotation and discrete wavelet transform (DWT) which is multi-resolutional and multi-oriented along with higher directionality. Secondly, after the creation of hybrid feature vector, to increase the accuracy of the system, classifiers are employed on the combination of LBP and DWT. The performance of two machine learning classifiers is proposed here which are Support Vector Machine (SVM) and Extreme learning machine (ELM). Both proposed methods P1 (LBP+DWT+SVM) and P2 (LBP+DWT+ELM) are tested on rotated Brodatz dataset consisting of 1456 texture images and MIT VisTex dataset of 640 images. In both experiments the results of both the proposed methods are much better than simple combination of DWT +LBP and much other state of art methods in terms of precision and accuracy when different number of images is retrieved.  But the results obtained by ELM algorithm shows some more improvement than SVM. Such as when top 25 images are retrieved then in case of Brodatz database the precision is up to 94% and for MIT VisTex database its value is up to 96% with ELM classifier which is very much superior to other existing texture retrieval methods.

Publisher

Ediciones Universidad de Salamanca

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fused LBP Texture Descriptor-Based Image Retrieval System;Lecture Notes in Electrical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3