High-Performance Deep learning to Detection and Tracking Tomato Plant Leaf Predict Disease and Expert Systems

Author:

Jasim Yaser AbdulAali

Abstract

Nowadays, technology and computer science are rapidly developing many tools and algorithms, especially in the field of artificial intelligence.  Machine learning is involved in the development of new methodologies and models that have become a novel machine learning area of applications for artificial intelligence. In addition to the architectures of conventional neural network methodologies, deep learning refers to the use of artificial neural network architectures which include multiple processing layers. In this paper, models of the Convolutional neural network were designed to detect (diagnose) plant disorders by applying samples of healthy and unhealthy plant images analyzed by means of methods of deep learning. The models were trained using an open data set containing (18,000) images of ten different plants, including healthy plants. Several model architectures have been trained to achieve the best performance of (97 percent) when the respectively [plant, disease] paired are detected. This is a very useful information or early warning technique and a method that can be further improved with the substantially high-performance rate to support an automated plant disease detection system to work in actual farm conditions.

Publisher

Ediciones Universidad de Salamanca

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3