On the Use of Compact Approaches in Evolution Strategies

Author:

Sergio Anderson,Carvalho Sidartha,Rego Marco

Abstract

Compact evolutionary algorithms have proven to be an efficient alternative for solving optimization problems in computing environments with low processing power. In this kind of solution, a probability distribution simulates the behavior of a population, thus looking for memory savings. Several compact algorithms have been proposed, including the compact genetic algorithm and compact differential evolution. This work aims to investigate the use of compact approaches in other important evolutionary algorithms: evolution strategies. This paper proposes two different approaches for compact versions of evolution strategies. Experiments were performed and the results analyzed. The results showed that, depending on the nature of problem, the use of the compact version of Evolution Strategies can be rewarding.

Publisher

Ediciones Universidad de Salamanca

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metaheuristics in the Balance: A Survey on Memory-Saving Approaches for Platforms with Seriously Limited Resources;International Journal of Intelligent Systems;2023-11-04

2. A compact compound sinusoidal differential evolution algorithm for solving optimisation problems in memory-constrained environments;Expert Systems with Applications;2021-12

3. Public Tendering Processes Based on Blockchain Technologies;Advances in Intelligent Systems and Computing;2020-09-10

4. Virtual Agent Societies to Provide Solutions to an Investment Problem;Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference;2020-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3