Consensus-based Approach for Keyword Extraction from Urban Events Collections

Author:

Alves Ana OLIVEIRA,Ribeiro Bernardete

Abstract

Automatic keyword extraction (AKE) from textual sources took a valuable step towards harnessing the problem of efficient scanning of large document collections. Particularly in the context of urban mobility, where the most relevant events in the city are advertised on-line, it becomes difficult to know exactly what is happening in a place.In this paper we tackle this problem by extracting a set of keywords from different kinds of textual sources, focusing on the urban events context. We propose an ensemble of automatic keyword extraction systems KEA (Key-phrase Extraction Algorithm) and KUSCO (Knowledge Unsupervised Search for instantiating Concepts on lightweight Ontologies) and Conditional Random Fields (CRF).Unlike KEA and KUSCO which are well-known tools for automatic keyword extraction, CRF needs further pre-processing. Therefore, a tool for handling AKE from the documents using CRF is developed. The architecture for the AKE ensemble system is designed and efficient integration of component applications is presented in which a consensus between such classifiers is achieved. Finally, we empirically show that our AKE ensemble system significantly succeeds on baseline sources and urban events collections.

Publisher

Ediciones Universidad de Salamanca

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3