Complémentarité des images optiques SENTINEL-2 avec les images radar SENTINEL-1 et ALOS-PALSAR-2 pour la cartographie de la couverture végétale : application à une aire protégée et ses environs au Nord-Ouest du Maroc via trois algorithmes d’apprentissage automatique.

Author:

ACHARKI Siham,FRISON Pierre Louis,AMHARREF Mina,KHOJ Hanna,BERNOUSSI Samed

Abstract

Dans cet article, nous évaluons les performances de classification de trois algorithmes non paramétriques (kNN, RF et SVM) en utilisant les données multi-temporelles de trois satellites (Sentinel-1, Alos-Palsar-2 et Sentinel-2) et de leurs combinaisons. La zone d'étude choisie se caractérise par un climat méditerranéen subhumide et une topographie très accidentée qui rend la classification d’occupation du sol particulièrement difficile. En outre, elle contient une aire protégée nommée Jbel Moussa et présente une diversité biologique exceptionnelle. Afin de suivre le couvert végétal de cette dernière, nous avons acquis et prétraités les images satellitaires optiques et radar pour la période du 1er janvier au 31 décembre 2017. Ensuite, nous avons combiné les trois satellites, soit douze scénarios produits. Des cartes de classifications illustrent notre approche. Un total de trente-six classifications a été obtenu, en se basant sur sept classes : eau, bâtiment et infrastructures, sol nu, végétation peu dense, prairies, forêt peu dense et forêt dense. Les résultats ont montré que pour tous les scénarios, la précision globale la plus élevée a été produite par RF (53,03%-93,06%), suivie de kNN (49,16%-89,63%), tandis que SVM (47,86%-86,08%) a produit la précision de classification la plus faible. L'étude a également montré une similitude entre les performances de la combinaison des trois satellites et celles de Sentinel-2 seul.  Les estimations de la superficie pour les différentes classes vont de 0,85 km2 (0,11% de la zone d'étude) à 326,84 km2 (41,31% de la zone d'étude)

Publisher

Revue Francaise de Photogrammetrie et Teledetection (Societe Francaise de Photogrammetrie)

Subject

Electrical and Electronic Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3