Author:
Bonsante Francesco,Mondello Gabriele,Schlenker Jean-Marc
Abstract
abstract: Let $(S,h)$ be a closed hyperbolic surface and $M$ be a quasi-Fuchsian $3$-manifold. We consider incompressible maps from $S$ to $M$ that are critical points of an energy functional $F$ which is homogeneous of degree $1$. These ``minimizing'' maps are solutions of a non-linear elliptic equation, and reminiscent of harmonic maps---but when the target is Fuchsian, minimizing maps are minimal Lagrangian diffeomorphisms to the totally geodesic surface in $M$. We prove the uniqueness of smooth minimizing maps from $(S,h)$ to $M$ in a given homotopy class. When $(S,h)$ is fixed, smooth minimizing maps from $(S,h)$ are described by a simple holomorphic data on $S$: a complex self-adjoint Codazzi tensor of determinant $1$. The space of admissible data is smooth and naturally equipped with a complex structure, for which the monodromy map taking a data to the monodromy representation of the image is holomorphic. Minimizing maps are in this way reminiscent of shear-bend coordinates, with the complexification of $F$ analoguous to the complex length.