Effects of medicinal plant ipe on expression of inducible nitric oxide synthase in inerleukin-1β-stimulated Hepatocytes

Author:

Ozaki Takashi,Kawaguchi Yusai,Kotsuka Masaya,Iida Hiroya,Kaibori Masaki,Nishizawa Mikio,Okumura Tadayoshi,Sekimoto Mitsugu

Abstract

Background: The traditional medicine ipe is thought to have various pharmacological actions including anticancer and anti-inflammatory activities. However, there is little scientific evidence to demonstrate the organ-protective effects of ipe. The prevention of nitric oxide (NO) production in inflamed livers by inducible NO synthase (iNOS) is an indicator of liver protection. We examined proinflammatory cytokine-stimulated hepatocytes as a simple “in vitro liver injury model” to determine ipe’s liver-protective effects of ipe and clarify its mechanisms.  Methods: Primary cultured hepatocytes were treated with interleukin (IL)-1β in the presence or absence of ipe. The induction of iNOS and its signal pathway were analyzed. Results: Ipe inhibited the production of NO stimulated by IL-1β and showed the greatest effect (more than 90% inhibition) at 2 mg/ml. Ipe decreased iNOS protein and mRNA expression. Ipe decreased NF-κB activation (its translocation to the nucleus and DNA binding), although there was no effect on IκBα degradation. Ipe inhibited Akt activation, followed by decreased the type I IL-1 receptor mRNA and protein levels. Transfection experiments revealed that ipe decreased both activities of iNOS promoter transactivation and mRNA stability. In support of the latter observation, ipe inhibited the expression of the antisense transcript of the iNOS gene. Conclusion: Ipe blocked IκB kinase and phosphatidylinositol 3-kinase/Akt signal pathways, which caused the reduction of iNOS mRNA synthesis and its stability. This resulted in the inhibition of iNOS induction and NO production. Ipe may have a potent beneficial effect against NO-mediated injury in organs including the liver. Key words: ipe, inducible nitric oxide synthase, liver injury, primary cultured hepatocytes, nuclear factor-κB, the type I interleukin-1 receptor, iNOS antisense transcript

Publisher

Functional Food Center

Subject

Nutrition and Dietetics,Biochemistry,Medicine (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3