Tilapia Protein Hydrolysate Enhances Transepithelial Calcium Transport in Caco2 cells

Author:

Buaduang Nootjaree,Chansuwan Worrapanit,Towatana Nongporn Hutadilok,Yang Zhe,Sirinupong Nualpun

Abstract

Background: Potent calcium uptake is essential for calcium balance and normal health. Prolonged low intake of calcium is associated with osteoporosis, dental changes, cataracts, and alterations in the brain. However, calcium is difficult to be directly absorbed from the food due to the insoluble calcium salt precipitation that occurs in the intestinal environment. Methods: Tilapia protein hydrolysate (TPH) was prepared by alcalase digestion. The Calcium-binding activity was measured using calcium colorimetric assay, the absorption at 612 nm. The interaction between TPH and calcium was examined by spectroscopic analysis, ultraviolet absorption and fluorescence measurement. TPH-calcium-binding stability in the human digestion system was evaluated by in vitro pepsin-pancreatin hydrolysis simulating human gastric and intestinal digestion. The effects of food components on TPH-calcium-binding activity was also analyzed. The enhancement of transepithelial calcium transport by TPH was determined by in vitro Caco2 epithelial cell-like monolayer. Results: TPH produced from Nile tilapia (Oreochromis niloticus) exhibited calcium-binding activity. It was the peptides in the hydrolysate that contributed to calcium-binding since the spectroscopic changes induced by calcium were characteristic of peptide bonds and tryptophan residues. The calcium binding of TPH was compatible with food matrices. Most food components including saccharides, amino acids and vitamins showed positive or no effects on calcium-binding. The calcium-binding of TPH was also stable in the simulated gastrointestinal digestion system. Pepsin and pancreatin did not considerably change the calcium-binding activity of TPH. Of note, TPH reduced precipitation of calcium by oxalate and phytate, the two most anti-nutritional factors present in green leafy vegetables. Finally, we showed that TPH significantly promoted transepithelial calcium transport in the Caco-2 cell permeability model. Conclusions: Tilapia protein hydrolysate produced by alcalase digestion possessed calcium-binding activity and prevent precipitation of calcium by a mineral chelating agent as well as enhanced transepithelial calcium transport in Caco2 cell. The result implicated the potential of TPH as a functional food ingredient for promoting calcium absorption. Keywords: Tilapia protein hydrolysate; Calcium binding peptides; Calcium absorption

Publisher

Functional Food Center

Subject

Nutrition and Dietetics,Biochemistry,Medicine (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3