Anti-inflammatory and anti-allergic activities of Skipjack tuna (Katsuwonus pelamis) dark muscle hydrolysates evaluated in cell culture model

Author:

Chansuwan Worrapanit,Upunqui Chutha Takahashi,Chinachoti Pavinee

Abstract

Background: Oxidative stress and inflammation are inextricably linked and play major roles in the onset and development of Non-communicable diseases (NCD) which are the most common cause of death and disability in modern world. Hydrolyzed proteins have also been suggested to be used to manage adverse food allergic reaction. Therefore, this study aimed to investigate anti-inflammatory and anti-allergy activities of dark muscle tuna hydrolysates using biological cell line systems as a function of enzyme, the extent of hydrolysis and molecular weight range.Methods: Dark muscle tuna hydrolysates were prepared with two different enzyme types; Alcalase and Flavourzyme. Anti-inflammation activity was measured by inhibitory effect of nitric oxide (NO) production on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Anti-allergy was determined from ability of hydrolysates to inhibit b-hexsosaminidase (b-HEX) release from RBL-2H3 mast cells. Cytotoxicity was also investigated in both RAW 264.7 macrophage cells and RBL-2H3 mast cells.Results: No cytotoxic effect on RAW 264.7 macrophage cells and RBL-2H3 mast cells was observed. The NO inhibition and b-HEX release were found significant in dose dependent manner (p<0.05). Alcalase hydrolysates demonstrated greater anti-inflammatory and anti-allergic activities than Flavourzyme hydrolysates (p<0.05). IC50 of both effects were lower than the unhydrolyzed control, > 45.44 mg/ml for NO inhibition and > 65.23 mg/ml for b-HEX release inhibition. These effects increased with the extent of hydrolysis and enzyme concentration. The peptide of lowest molecular weight range (< 3 KDa) was highest in anti-inflammatory and anti-allergic actions. Reducing secretion of TNF-a, IL-6 and IL-1b was found greater in Alcalase hydrolysate than Flavourzyme one.Conclusions: Skipjack tuna dark muscle hydrolysates from Alcalase resulted in peptides with anti-inflammation activity, as determined by NO production in LPS-stimulated RAW 264.7 macrophage cells and anti-allergic properties as measured by a suppression of degranulation of sensitized RBL-2H3 cells. Anti-inflammatory effect may be due to their anti-oxidative capacity and relevant inflammatory factors attenuated with hydrolysate by reducing secretion of pro-inflammatory cytokine (TNF-a, IL-6 and IL-1b). Inhibition of b-HEX release by peptides may be due to membrane-stabilizing action or/and blockade of IgE antibody at fragment region.Keywords: Skipjack tuna, anti-inflammation, enzymatic hydrolysate, dark muscle, anti-allergy

Publisher

Functional Food Center

Subject

Nutrition and Dietetics,Biochemistry,Medicine (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3