Analysis of the effectiveness of two different loss functions in training a neural network in lung image reconstruction using impedance tomography

Author:

Lalak-Dybała MalgorzataORCID,Stefaniak BarbaraORCID,Olszewski PawełORCID

Abstract

The article presents research findings on developing a medical diagnostic system based on electrical impedance tomography technology. One of the key components of this project is developing a method for reconstructing the structure of human lungs using this technology. The authors of the article compared the effectiveness of two different loss functions in training a neural network, which is tasked with accurately replicating the lung structure based on electrical impedance tomography data. The researchers analyzed various approaches to calculating loss functions, including cosine embedding loss and InfoNCE loss. They compared the results obtained using these two functions to identify which one performs better in lung structure reconstruction. The findings of these studies may have significant implications for the development of diagnostic systems based on electrical impedance tomography and for improving the effectiveness of lung disease diagnosis. Additionally, the authors discuss potential future directions for the project, including possible applications of the research findings in clinical practice. Future research efforts may focus on optimizing neural network parameters, exploring alternative loss functions, or utilizing advanced machine learning techniques for even more precise lung structure reconstruction. The pursuit of improving such diagnostic systems could lead to significant advancements in the field of medicine, particularly in diagnosing and treating respiratory diseases.

Publisher

Akademia Nauk Stosowanych WSGE im. A. De Gasperi w Józefowie

Reference15 articles.

1. Filipowicz, S.F., Rymarczyk, T., (2003). Tomografia impedancyjna, pomiary, konstrukcje i metody tworzenia obrazu: 95-101.

2. Performance analysis of image thresholding: Otsu technique

3. Chronic lung disease in children: disease focused use of lung function

4. Hasgall,P.A., Gennaro,Di. F., C. Baumgartner, Neufeld, E., Lloyd, B., Gosselin,M. C., Payne, D., Klingenböck, A., Kuster, N., (2022). ,IT’IS Database for thermal and electromagnetic parameters of biological tissues, Version 4.1.

5. He, K., Zhang,X., Ren, S., Sun, J., (2016). Deep Residual Learning for Image Recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3