Machine learning and IoT system for real-time cough detection and classification

Author:

Miotła PawełORCID,Szuster IwonaORCID,Wojcik DariuszORCID,Hyka OleksiiORCID

Abstract

Our research investigates the application of machine learning and Internet of Things (IoT) technologies in healthcare, focusing on detecting and classifying coughing episodes. Leveraging deep learning architectures and a comprehensive IoT infrastructure, we developed an automated system capable of monitoring audio signals from a microphone array module to detect coughs and classify their types accurately. The study utilized the COUGHVID dataset for model training and evaluation, employing rigorous preprocessing techniques to ensure data integrity. Through comparative analysis, we identified MobileNet as the optimal model for cough detection, achieving promising results in accuracy, area under the ROC curve (AUC), and F1 score. Furthermore, our emphasis on privacy safeguards and remote medical examination facilitation underscores the practical implications of our research in enhancing healthcare delivery. Our study contributes to advancing technology-enabled healthcare solutions, offering valuable insights and solutions for improving patient care and outcomes.

Publisher

Akademia Nauk Stosowanych WSGE im. A. De Gasperi w Józefowie

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3