Author:
Chen Rong,Luo Ling,Zhang Yun-Zhi,Liu Zhen,Liu An-Lin,Zhang Yi-Wen
Abstract
BACKGROUND
Portal hypertension (PHT), primarily induced by cirrhosis, manifests severe symptoms impacting patient survival. Although transjugular intrahepatic portosystemic shunt (TIPS) is a critical intervention for managing PHT, it carries risks like hepatic encephalopathy, thus affecting patient survival prognosis. To our knowledge, existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes. Consequently, the development of an innovative modeling approach is essential to address this limitation.
AIM
To develop and validate a Bayesian network (BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.
METHODS
The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed. Variables were selected using Cox and least absolute shrinkage and selection operator regression methods, and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.
RESULTS
Variable selection revealed the following as key factors impacting survival: age, ascites, hypertension, indications for TIPS, postoperative portal vein pressure (post-PVP), aspartate aminotransferase, alkaline phosphatase, total bilirubin, prealbumin, the Child-Pugh grade, and the model for end-stage liver disease (MELD) score. Based on the above-mentioned variables, a BN-based 2-year survival prognostic prediction model was constructed, which identified the following factors to be directly linked to the survival time: age, ascites, indications for TIPS, concurrent hypertension, post-PVP, the Child-Pugh grade, and the MELD score. The Bayesian information criterion was 3589.04, and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16. The model’s accuracy, precision, recall, and F1 score were 0.90, 0.92, 0.97, and 0.95 respectively, with the area under the receiver operating characteristic curve being 0.72.
CONCLUSION
This study successfully developed a BN-based survival prediction model with good predictive capabilities. It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT.
Publisher
Baishideng Publishing Group Inc.