Development of a machine learning-based model for predicting risk of early postoperative recurrence of hepatocellular carcinoma

Author:

Zhang Yu-Bo,Yang Gang,Bu Yang,Lei Peng,Zhang Wei,Zhang Dan-Yang

Abstract

BACKGROUND Surgical resection is the primary treatment for hepatocellular carcinoma (HCC). However, studies indicate that nearly 70% of patients experience HCC recurrence within five years following hepatectomy. The earlier the recurrence, the worse the prognosis. Current studies on postoperative recurrence primarily rely on postoperative pathology and patient clinical data, which are lagging. Hence, developing a new pre-operative prediction model for postoperative recurrence is crucial for guiding individualized treatment of HCC patients and enhancing their prognosis. AIM To identify key variables in pre-operative clinical and imaging data using machine learning algorithms to construct multiple risk prediction models for early postoperative recurrence of HCC. METHODS The demographic and clinical data of 371 HCC patients were collected for this retrospective study. These data were randomly divided into training and test sets at a ratio of 8:2. The training set was analyzed, and key feature variables with predictive value for early HCC recurrence were selected to construct six different machine learning prediction models. Each model was evaluated, and the best-performing model was selected for interpreting the importance of each variable. Finally, an online calculator based on the model was generated for daily clinical practice. RESULTS Following machine learning analysis, eight key feature variables (age, intratumoral arteries, alpha-fetoprotein, pre-operative blood glucose, number of tumors, glucose-to-lymphocyte ratio, liver cirrhosis, and pre-operative platelets) were selected to construct six different prediction models. The XGBoost model outperformed other models, with the area under the receiver operating characteristic curve in the training, validation, and test datasets being 0.993 (95% confidence interval: 0.982-1.000), 0.734 (0.601-0.867), and 0.706 (0.585-0.827), respectively. Calibration curve and decision curve analysis indicated that the XGBoost model also had good predictive performance and clinical application value. CONCLUSION The XGBoost model exhibits superior performance and is a reliable tool for predicting early postoperative HCC recurrence. This model may guide surgical strategies and postoperative individualized medicine.

Publisher

Baishideng Publishing Group Inc.

Subject

Gastroenterology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3