Decolorization of p-nitrophenol and draft genome sequence of Pseudomonas sp. strain PNPG3: A preliminary report

Author:

Aftabul Alam S.K., ,Saha P.ORCID,

Abstract

Aim: To study decolorization (with concomitant depletion) of p-nitrophenol by a bacterial strain designated as PNPG3 and determination of draft genome sequence of the strain to understand its potential. Methodology: A comparative study of PNP’s decolorization (with concomitant removal) in three different test conditions was undertaken. The experiment was carried out in one-liter volume Schott Duran bottles. Genomic DNA was extracted and draft genome sequence was determined using Illumina HiSeqX platform. Raw reads were assembled and subjected to subsystem classification using several bioinformatics tools (RAST, PATRIC, and NCBI’s PGAP pipelines). The genome sequence was deposited at the NCBI Genome database and the strain PNPG3 was also deposited at MTCC, IMTECH, Chandigarh. Results: The bacterial strain PNPG3 could carry out decolorization with concomitant removal of PNP in all three sets of experiments, including one set, where only distilled water was used. The best decolorization (with concomitant PNP removal) capacity was recorded for set D (with Minimal Medium, MM; PNP, and free cells) followed by set E (MM, PNP, and immobilized cells) and set B (distilled water, PNP and free cells) conditions. The size of the draft genome sequence of the strain PNPG3 was 6,566,321 bp, with 62.26% GC contents. The genome had 6210 protein-coding sequences and 66 tRNA genes. The predictive presence of different types of proteases and siderophore receptors indicated its possible potential for industrial applications and plant growth-promoting activities. Interpretation: The bacterium Pseudomonas sp. strain PNPG3 has the capacity to decolorize p-nitrophenol even in presence of distilled water and it remains viable for up to twelve days. The genome sequence revealed that the strain harbored genes responsible for the metabolism of aromatic compounds, chemotaxis, protease, and siderophore receptors indicating the versatile nature of the strain. Key words: Decolorization, P-nitrophenol, Pseudomonas sp., RAST, Xenobiotic

Publisher

Triveni Enterprises

Subject

Health, Toxicology and Mutagenesis,Toxicology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3