Response of soybean genotypes to iron limiting stress in calcareous vertisol under ambient and elevated CO2 and temperature conditions

Author:

Raj Kiran Karthik, ,Pandey R.N.,Singh Bhupinder,Meena M.C.,Talukdar A.,Chakraborty D., , , , ,

Abstract

Aim: To compare the relative performance of two contrasting genotypes of soybean to iron limiting conditions under ambient and elevated CO2 and temperature conditions. Methodology: A pot culture experiment was performed using calcareous vertisol soil. The environmental factors viz. CO2 and temperature were combined and applied as a single factor with two levels: a-[CO2+T] (400±10 µmol mol-1, day/night temperature 30oC/22oC) and e-[CO2+T] (610±10 µmol mol-1, day/night temperature 34oC/26oC). Soybean genotype that differed in iron use efficiency was used as another factor and two contrasting genotypes were used as two levels viz. iron efficient and responsive (FeER) and iron inefficient and responsive (FeIR). Results: The higher partial pressure of CO2 under elevated carbon dioxide and temperature condition (Pco2 = 61.8 Pa) dissolved the native CaCO3 from calcareous vertisol soil and thereby resulted in higher HCO3- ion concentration. The antagonistic interaction between Fe2+ with HCO3- ion resulted in greater iron stress. As compared to ambient condition, seed yield was significantly reduced under more stressed e-[CO2+T] condition and resulted in ~1.4 and ~1.9 times drop in FeER and FeIR genotypes, respectively. Iron efficient and responsive (FeER) genotype recorded an impressive performance, as compared to the iron inefficient and responsive (FeIR) genotype, in counteracting iron deficiency stress, both under ambient and elevated conditions. Interpretation: The intra-specific variability between soybean genotypes and their response to elevated CO2 and temperature can be exploited to remediate the emerging iron deficiency stress in soybean plants and suggest ways to structure the future breeding programmes to adapt to the climate change. Key words: Calcareous vertisol, Chlorosis, Climate change, CO2, Soybean

Publisher

Triveni Enterprises

Subject

Health, Toxicology and Mutagenesis,Toxicology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3