Computational investigation of free convection flow inside inclined square cavities

Author:

Mariya Helen ,V Prabhakar

Abstract

The temperature and fluid profiles of flow inside tilted square cavities are analysed with two different cases of thermal boundary conditions, (1) Isothermally cold sidewalls of the cavity and the hot bottom wall kept parallel to the insulated top wall, (2) Hot left wall, cold right wall, insulated top and bottom walls. The Galerkin finite element method with penalty parameter is used to solve the nonlinear coupled system of partial differential equations governing the flow and thermal fields. The method is further used to solve the Poisson equation for stream function. The results are presented in terms of isotherms and streamlines. The Gaussian rule with the hybrid function formed from the block-pulse function and Lagrange polynomial is implemented for the evaluation of the definite integrals present in the residual equations.  Attempting to affix the hybrid methods in the integration part for solving Finite Element Method (FEM) turned efficacious as the convergence is achieved for streamlines and isotherms with the existing results. The tilted square cavities with inclination angles Deg 0 to Deg 90 and Rayleigh number ranging between 10^3  and 10^5 for Pr=0.71  (air) are investigated. The source code for the finite element analysis is written in Mathematica. The results thus obtained are found to be competent with those of COMSOL, the Software for Multiphysics Simulation.

Publisher

Nigerian Society of Physical Sciences

Subject

General Physics and Astronomy,General Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3