Goodness of Fit Test of an Autocorrelated Time Series Cubic Smoothing Spline Model

Author:

Adams Samuel OlorunfemiORCID,Obaromi Davies Abiodun,Irinews Alumbugu Auta

Abstract

We investigated the finite properties as well as the goodness of fit test for the cubic smoothing spline selection methods like the Generalized Maximum Likelihood (GML), Generalized Cross-Validation (GCV) and Mallow CP criterion (MCP) estimators for time-series observation when there is the presence of Autocorrelation in the error term of the model. The Monte-Carlo study considered 1,000 replication with six sample sizes: 30; 60; 120; 240; 480 and 960, four degree of autocorrelations; 0.1; 0.3; 0.5; and 0.9 and three smoothing parameters; lambdaGML= 0.07271685, lambdaGCV= 0.005146929, lambdaMCP= 0.7095105. The cubic smoothing spline selection methods were also applied to a real-life dataset. The Predictive mean square error, R-square, and adjusted R-square criteria for assessing finite properties and goodness of fit among competing models discovered that the performance of the estimators is affected by changes in the sample sizes and autocorrelation levels of the simulated and real-life data set. The study concluded that the Generalized Cross-Validation estimator provides a better fit for Autocorrelated time series observation. It is recommended that the GCV works well at the four autocorrelation levels and provides the best fit for time-series observations at all sample sizes considered. This study can be applied to; non –parametric regression, non –parametric forecasting, spatial, survival and econometric observations.

Publisher

Nigerian Society of Physical Sciences

Subject

General Physics and Astronomy,General Mathematics,General Chemistry

Reference27 articles.

1. Q.Kong, T. Siauw &A.M.Bayen, Python Programming and Numerical Methods: A Guide for Engineers and Scientist, Elsevier, ISBN: 978-0-12819549-9. (2020) https://doi.org/10.1016/C2018-0-04165-1

2. R. G. McClarren, Computational nuclear engineering and radiological science using python, https://doi.org/10.1016/C2016-0-03507-16 Elsevier (2018) 439. [3] J. R. Buchanan, “Cubic Spline Interpolation: MATH 375, Numerical Analysis”, Banach. Millersville.edu (2010).

3. J. Chen, “Testing goodness of fit of polynomial models via spline smoothing techniques”, Statistics and Probability Letters 19 (1994) 65. https://doi.org/10.1016/0167-7152(94)90070-1

4. N. Caouder & S. Huet, “Testing goodness-of-fit for nonlinear regression models with heterogeneous variances”, Computational Statistics and Data Analysis 23 (1998) 491. https://doi.org/10.1016/S0167-9473(96)00049-1

5. C.M. Crainiceanua & D. Ruppert, “Likelihood ratio tests for goodnessof-fit of a nonlinear regression model”, Journal of Multivariate Analysis 91 (2004) 35.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3