Author:
Abubakar Hamza,Masanawa Abdu Sagir,Yusuf Surajo,Boaku G. I.
Abstract
This study proposed a hybridization of higher-order Random Boolean kSatisfiability (RANkSAT) with the Hopfield neural network (HNN) as a neuro-dynamical model designed to reflect knowledge efficiently. The learning process of the Hopfield neural network (HNN) has undergone significant changes and improvements according to various types of optimization problems. However, the HNN model is associated with some limitations which include storage capacity and being easily trapped to the local minimum solution. The Election algorithm (EA) is proposed to improve the learning phase of HNN for optimal Random Boolean kSatisfiability (RANkSAT) representation in higher order. The main source of inspiration for the Election Algorithm (EA) is its ability to extend the power and rule of political parties beyond their borders when seeking endorsement. The main purpose is to utilize the optimization capacity of EA to accelerate the learning phase of HNN for optimal random k Satisfiability representation. The global minima ratio (mR) and statistical error accumulations (SEA) during the training process were used to evaluate the proposed model performance. The result of this study revealed that our proposed EA-HNN-RANkSAT outperformed ABC-HNN-RANkSAT and ES-HNN-RANkSAT models in terms of mR and SEA.This study will further be extended to accommodate a novel field of Reverse analysis (RA) which involves data mining techniques to analyse real-life problems.
Publisher
Nigerian Society of Physical Sciences
Subject
General Physics and Astronomy,General Mathematics,General Chemistry
Reference21 articles.
1. W. A. T. W. Abdullah, “Logic programming on a neural network”, International journal of intelligent systems 7 (1992) 513.
2. H. Abubakar, S. A. Mmasanwa, S. Yusuf & Y. Abdurrahman, “Agent Based Computational Modelling For Mapping Of Exact Ksatisfiability Representation In Hopfield Neural Network Model”, International Journal of Scientific and Technology Research 9 (2020) 76.
3. H. Abubakar, S. R. M. Sabri, S. A. Masanawa & S. Yusuf, “Modified election algorithm in hopfield neural network for optimal random k satisf iability representation”, International Journal for Simulation and Multidisciplinary Design Optimization 11 (2020) 16.
4. H. Abubakar & S. Sathasivam, “Developing random satisfiability logic programming in Hopfield neural network”, AIP Conference Proceedings, AIP Publishing LLC 2266 (2020).
5. H. Abubakar, S. Sathasivam & S. A. Alzaeemi, “Effect of negative campaign strategy of election algorithm in solving optimization problem”, Journal of Quality Measurement and Analysis JQMA 16 (2020) 171.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献