Author:
Badakaya Abbas Ja'afaru,Muhammad Bilyaminu
Abstract
We study a pursuit differential game problem with finite number of pursuers and one evader on a nonempty closed convex subset of the Hilbert space l2. Players move according to certain first order ordinary differential equations and control functions of the pursuers and evader are subject to integral constraints. Pursuers win the game if the geometric positions of a pursuer and the evader coincide. We formulated and prove theorems that are concern with conditions that ensure win for the pursuers. Consequently, wining strategies of the pursuers are constructed. Furthermore, illustrative example is given to demonstrate the result.
Publisher
Nigerian Society of Physical Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献