Modelling the transmission dynamics of Omicron variant of COVID-19 in densely populated city of Lagos in Nigeria

Author:

Bolaji Bolarinwa,Omede B. I.,Odionyenma U. B.,Ojih P. B.,Ibrahim Abdullahi A.

Abstract

The kernel of the work in this article is the proposition of a model to examine the effect of control measures on the transmission dynamics of Omicron variant of coronavirus disease in the densely populated metropolis of Lagos. Data as relate to the pandemic was gathered as officially released by the Nigerian authority. We make use of this available data of the disease from 1st of December, 2021 to 20th of January, 2022 when omicron variant was first discovered in Nigeria. We computed the basic reproduction number, an epidemiological threshold useful for bringing the disease under check in the aforementioned geographical region of the country. Furthermore, a forecasting tool was derived, for making forecasts for the cumulative number of cases of infection as reported and the number of individuals where the Omicron variant of COVID-19 infection is active for the deadly disease. We carried out numerical simulations of the model using the available data so gathered to show the effects of non-pharmaceutical control measures such as adherence to common social distancing among individuals while in public space, regular use of face masks, personal hygiene using hand sanitizers and periodic washing of hands with soap and pharmaceutical control measures, case detecting via contact tracing occasioning clinical testing of exposed individuals, on the spread of Omicron variant of COVID-19 in the city. The results from the numerical simulations revealed that if detection rate for the infected people can be increased, with majority of the population adequately complying with the safety protocols strictly, then there will be a remarkable reduction in the number of people being afflicted by the scourge of the highly communicable disease in the city.

Publisher

Nigerian Society of Physical Sciences

Subject

General Physics and Astronomy,General Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3