A Study of the Relationship Between Southward Bz > -10 nT and Storm Time Disturbance Index During Solar Cycle 23

Author:

David T. W.ORCID,Adekoya BolarinwaORCID,Michael ChizurumokeORCID,Adekoya Sofiat,Adenuga Omolara,Kareem Semiu,Oladunjoye Hamid,Ajetunmobi Abayomi,Williams Oyindamola,Ogundele Damilola

Abstract

Magnetic reconnection can be used for studying the geoeffective processes in the coupled Sun–Solar wind – Magnetosphere dynamics leading to geomagnetic disturbance. In this study, 1-hour resolution solar wind plasma parameters from OMNIweb were used to investigate the relationship between moderate southward interplanetary magnetic field, IMF-Bz (i.e., Bz > -10 nT) and geomagnetic storm time disturbance, Dst , during the ascending, maximum and descending phases of solar cycle 23. Occurrences of different classes of geomagnetic storms during moderate southward Bz are reported. The occurrence of weak and moderate geomagnetic storms is more predominant during maximum solar activity than intense and super intense storms. It was found that 10.11 % (181) of all the classes of the storm were intense, and 0.17 % (3) were super intense storms. Furthermore, it was found that 4 (2.2 %) out of the 181 intense storms were caused by southward Bz > -10 nT which were associated with the complex structure due to the high-speed solar wind stream and corotating interacting region. In such a complex structure and Bz > -10 nT, we observed that an intense geomagnetic storm rarely occurs and if it does, would be predominant around solar maximum. It was found that long-duration (\Delta t > 6 hrs) of southward Bz (i.e., -10 nT < Bz  <= -3.6 nT ) can also lead to an intense geomagnetic storm during the solar maximum and descending phase (moderate solar activity) of a solar cycle. The complex structure of intense geomagnetic storms associated with the Bz > -10 nT is rare and possesses a special configuration of magnetic field and solar wind parameters structures which are CIR manifestations.

Publisher

Nigerian Society of Physical Sciences

Subject

General Physics and Astronomy,General Mathematics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3