Optimized Breast Cancer Classification using Feature Selection and Outliers Detection

Author:

Yusuf A. B,Dima R. M,Aina S. K

Abstract

Breast cancer is the second most commonly diagnosed cancer in women throughout the world. It is on the rise, especially in developing countries, where the majority of cases are discovered late. Breast cancer develops when cancerous tumors form on the surface of the breast cells. The absence of accurate prognostic models to assist physicians recognize symptoms early makes it difficult to develop a treatment plan that would help patients live longer. However, machine learning techniques have recently been used to improve the accuracy and speed of breast cancer diagnosis. If the accuracy is flawless, the model will be more efficient, and the solution to breast cancer diagnosis will be better. Nevertheless, the primary difficulty for systems developed to detect breast cancer using machine-learning models is attaining the greatest classification accuracy and picking the most predictive feature useful for increasing accuracy. As a result, breast cancer prognosis remains a difficulty in today's society. This research seeks to address a flaw in an existing technique that is unable to enhance classification of continuous-valued data, particularly its accuracy and the selection of optimal features for breast cancer prediction. In order to address these issues, this study examines the impact of outliers and feature reduction on the Wisconsin Diagnostic Breast Cancer Dataset, which was tested using seven different machine learning algorithms. The results show that Logistic Regression, Random Forest, and Adaboost classifiers achieved the greatest accuracy of 99.12%, on removal of outliers from the dataset. Also, this filtered dataset with feature selection, on the other hand, has the greatest accuracy of 100% and 99.12% with Random Forest and Gradient boost classifiers, respectively. When compared to other state-of-the-art approaches, the two suggested strategies outperformed the unfiltered data in terms of accuracy. The suggested architecture might be a useful tool for radiologists to reduce the number of false negatives and positives. As a result, the efficiency of breast cancer diagnosis analysis will be increased.

Publisher

Nigerian Society of Physical Sciences

Subject

General Physics and Astronomy,General Mathematics,General Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3