Forecasting of the epidemiological situation: Case of COVID-19 in Morocco

Author:

Chouit El Mehdi,RACHDI Mohamed,BELLAFKIH Mostafa,RAOUYANE Brahim

Abstract

Since the coronavirus pandemic started, many people have died due to the disease. The epidemic has been challenging to predict, as it progresses and spreads throughout the world. We used Auto-Regressive Integrated Moving Average (ARIMA) models to predict the outbreak of COVID-19 in the upcoming months in Morocco. In this work, we measured the effective reproduction number using the real data and the forecasted data produced by the two commonly used approaches, to reveal how effective the measures taken by the Moroccan government have been in controlling the COVID-19 outbreak. The prediction results for the next few months show a strong evolution in the number of confirmed and death cases in Morocco. We study the spread of COVID-19 in Morocco to see how many cases are discovered, recovered, and dead, and the forecasting of further cases is used as a basic novel method. It is based on time series models. We used coronavirus outbreak data from March 02, 2020, to August 04, 2021. ARIMA (Autoregressive integrated moving average) and Prophet time-series models are used to forecast the development of COVID-19, which is not a novel method. The mean absolute error, root mean square error, and coefficient of determination R2 were computed to assess the model's performance. Our study aims to provide a better understanding of the infectious disease outbreak that affected Morocco. It also provides information on the disease outbreak's epidemiology. Our study shows that the FBProphet model is more accurate in predicting the prevalence of COVID-19. It can help guide the government's efforts to prevent the virus' spread.

Publisher

Nigerian Society of Physical Sciences

Subject

General Physics and Astronomy,General Mathematics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing the Power of Artificial Intelligence and the Internet of Things for Improved Epidemic Forecasting;Advances in Environmental Engineering and Green Technologies;2024-05-31

2. Forecasting Ozone Levels in Morocco;Advances in Environmental Engineering and Green Technologies;2024-05-31

3. Morocco's COVID-19 instance as a potential epidemiological scenario;2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2023-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3