Author:
Ioannis K. Argyros ,George Santhosh
Abstract
The local convergence analysis of iterative methods is important since it demonstrates the degree of diffculty for choosing initial points. In the present study, we introduce generalized multi-step high order methods for solving nonlinear equations. The local convergence analysis is given using hypotheses only on the first derivative which actually appears in the methods in contrast to earlier works using hypotheses on higher order derivatives. This way we extend the applicability of these methods. The analysis includes computable radius of convergence as well as error bounds based on Lipschitz-type conditions not given in earlier studies. Numerical examples conclude this study.
Publisher
Universal Wiser Publisher Pte. Ltd
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献