Solving Nonlinear Fractional Differential Equations by Using Shehu Transform and Adomian Polynomials

Author:

Singh AmandeepORCID,Pippal SaritaORCID

Abstract

The current article provides a detailed analysis of the solution of non-linear ordinary differential equations of fractional and non-fractional order in series forms using the Shehu transform (ST) and the Adomian decomposition method (ADM), also known as the Shehu transform Adomian decomposition method (STADM). Previously, these methods were used to solve differential equations of integer order as well as a very small number of ordinary and fractional differential equations (FDEs). The Caputo's operator is used in a number of well-known FDEs, including the logistic equation, the Van der Pole equation, and other non-fractional order differential equations like the nonlinear Bratu type equation. It is noted that all of the example issues had series solutions thanks to STADM. Plotting the graph for several series terms of the series solution demonstrates how the approximate solution tends to the closed form solution. In some example problems the impact of α is shown.

Publisher

Universal Wiser Publisher Pte. Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3