Author:
R. Ravi Sankar ,N. Sreedhar ,K. R. Prasad
Abstract
The present paper focuses on establishing the existence and uniqueness of solutions to the nonlinear differential equations of order four y(4)(t) + g(t, y(t)) = 0, t ∈ [a, b], together with the non-homogeneous three-point boundary conditions y(a) = 0, y′(a) = 0, y′′(a) = 0, y(b) − αy(ξ ) = λ, where 0 ≤ a < b, ξ ∈ (a, b), α, λ are real numbers and the function g: [a, b] × R→R is a continuous with g(t, 0) ≠ 0. With the aid of an estimate on the integral of kernel, the existence results to the problem are proved by employing fixed point theorem due to Banach.
Publisher
Universal Wiser Publisher Pte. Ltd
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献