Abstract
In this paper, we present the local convergence analysis of Werner-King's method to approximate the solution of a nonlinear equation in Banach spaces. We establish the local convergence theorem under conditions on the first and second Fréchet derivatives of the operator involved. The convergence analysis is not based on the Taylor expansions as in the earlier studies (which require the assumptions on the third order Fréchet derivative of the operator involved). Thus our analysis extends the applicability of Werner-King's method. We illustrate our results with numerical examples. Moreover, the dynamics and the basins of attraction are developed and demonstrated.
Publisher
Universal Wiser Publisher Pte. Ltd
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献