Identifying Fake Digital Information Using Machine Learning Algorithms: Performance Analysis and Recommendation System

Author:

Patel Ashish,Jadhav Yogesh,Jhaveri Rutvij,Raut Roshani,Alotaibi Faisal Mohammed,Thakker Dhavalkumar

Abstract

This work focuses on the detection of fake digital information using various machine learning and deep learning algorithms to prevent its spread through Internet of Things (IoT) devices and systems. The research highlights the significance of detecting and preventing false or misleading information in critical areas such as healthcare, public safety, and emergency response. The study compares the performance of several supervised machine learning algorithms and identifies logistic regression as the most accurate (98.03%). The empirical analysis used data from The Indian Express, PolitiFact, and Kaggle and leveraged natural language processing (NLP) to prepare, clean, and model the data. To detect fraudulent posts, the study employed random forest, a supervised machine learning algorithm, which achieved an impressive accuracy rate of 99.71% on a Kaggle dataset. The research also developed a model for detecting false reporting related to COVID-19, utilizing the support vector machine technique, which achieved an accuracy rate of 78.69%. The presented work also determined the authenticity of images through convolutional neural networks (CNNs). Lastly, a content-based recommendation system was developed to enhance people’s security and confidence.

Publisher

Universal Wiser Publisher Pte. Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3