On Random Population Growth Punctuated by Geometric Catastrophic Events

Author:

Thierry E. Huillet

Abstract

Catastrophe Markov chain population models have received a lot of attention in the recent past. Besides systematic random immigration events promoting growth, we study a particular case of populations simultaneously subject to the effect of geometric catastrophes that cause recurrent mass removal. We describe the subtle balance between the two such contradictory effects.

Publisher

Universal Wiser Publisher Pte. Ltd

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extinction time in growth models subject to binomial catastrophes *;Journal of Statistical Mechanics: Theory and Experiment;2023-10-01

2. Extinction time in growth models subject to geometric catastrophes;Journal of Statistical Mechanics: Theory and Experiment;2023-04-01

3. Keeping random walks safe from extinction and overpopulation in the presence of life-taking disasters;Mathematical Population Studies;2021-10-25

4. Evaluating Dispersion Strategies in Growth Models Subject to Geometric Catastrophes;Journal of Statistical Physics;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3