Abstract
This paper investigates the significance of the dispersive concatenation model, incorporating the Kerr law of self-phase modulation in the presence of white noise. Our methodology relies on the enhanced direct algebraic method for integration. We reveal that intermediate solutions are expressed in terms of Jacobi's elliptic functions, leading to soliton solutions as the modulus of ellipticity approaches unity. This discovery culminates in the emergence of a diverse range of optical solitons. Our findings contribute novelty to the existing literature by offering insights into the behavior of optical solitons within the dispersive concatenation model, presenting a significant advancement in understanding this complex phenomenon.
Publisher
Universal Wiser Publisher Pte. Ltd
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献