Abstract
Let $K$ be a field of characteristic zero, and $L_{m,c}$ be the free metabelian nilpotent Lie algebra of class $c$ of rank $m$ over $K$. We call an automorphism $\phi$ pointwise inner, if there exists an inner automorphism $\xi_i$ for each generator $x_i$, $i=1,\ldots,m$, such that $\phi(x_i)=\xi_i(x_i)$. In this study, we exemine the group $PI(L_{m,c})$ of pintwise inner automorphisms of the Lie algebra $L_{m,c}$, and we provide a set of generators for this group.
Publisher
Journal of Universal Mathematics
Reference2 articles.
1. G. Endimioni, Inner automorphisms of free nilpotent groups, The Quarterly Journal of Mathematics, 53 (4), pp. 397-402 (2002).
Ş. Fındık, Normal and Normally outher automorphisms of free metabelian nilpotent Lie algebra, Serdica Math J., 36, pp. 171-210 (2010).
2. F.K. Grossman, On the residual Finiteness of certain mapping class groups, J. Londan Mathematical Soc., 9, pp. 160-164 (1974).
A. Lubotzky, Normal Automorphisms of free groups, J. Algebra, 63, pp. 494-498 (1980).
A. Temizyürek, E. Aydın, Serbest Metabelyen Lie Cebirlerinin noktasal iç otomorfizmleri, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, pp. 127-134 (2004).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献