Promising Developments in Marine Applications With Artificial Muscles: Electrodeless Artificial Cilia Microfibers

Author:

Kim Kwang J.,Palmre Viljar,Stalbaum Tyler,Hwang Taeseon,Shen Qi,Trabia Sarah

Abstract

AbstractIonic polymer-metal composite artificial muscles have received great research attention in the development of robotic manipulators, advanced medical devices, and underwater propulsors, such as artificial fish fins. This is due to their unique properties of large deformation, fast dynamic response, low-power requirements, and the ability to operate in aquatic environments. Recently, locomotion of biological cells and microorganisms through unique motion of cilium (flagellum) has received great interest in the field of biomimetic robotics. It is envisioned that artificial cilia can be an effective strategy for maneuvering and sensing in small-scale bioinspired robotic systems. However, current actuators used for driving the robots are typically rigid, bulky in mechanism and electronics requirements producing some acoustic signatures, and difficult to miniaturize. Herein, we report biomimetic, wirelessly driven, electroactive polymer (EAP) microfibers that actuate in an aqueous medium when subjected to an external electric field of <5 V/mm, which can be realized to create cilia-based robotic systems for aquatic applications. Initial development and manufacturing of these systems is presented in this paper. The EAP fibers are fabricated from ionic polymer precursor resin through melt-drawing process and have a circular cross-section with a diameter of 30‐70 μm. When properly activated and subjected to an electric field with switching polarity, the EAP fibers exhibit cyclic actuation with adequate response time (0.05‐5 Hz). The experimental results are presented and discussed to demonstrate the performance and feasibility of biomimetic cilia-based microactuators. Prospective bioinspired applications of the artificial muscle cilia-based system in marine operations are also discussed.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Reference46 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3