Analysis, Fabrication, and Testing of a Liquid Piston Compressor Prototype for an Ocean Compressed Air Energy Storage (OCAES) System

Author:

Park Joong-kyoo,Ro Paul I.,He Xiao,Mazzoleni Andre P.

Abstract

AbstractPrevious work concerning ocean compressed air energy storage (OCAES) systems has revealed the need for an efficient means for compressing air that minimizes the energy lost to heat during the compression process. In this paper, we present analysis, simulation, and testing of a tabletop proof-of-concept experiment of a liquid piston compression system coupled with a simulated OCAES system, with special attention given to heat transfer issues. An experimental model of a liquid piston system was built and tested with two different materials, polycarbonate and aluminum alloy, used for the compression chamber. This tabletop liquid piston system was tested in conjunction with a simulated OCAES system, which consisted of a hydrostatic tank connected to a compressed-air source from the wall to mimic the constant hydrostatic pressure at ocean depth experienced by the air stored in an actual OCAES system. Good agreement was found between the experimental and numerical studies and demonstrated that the heat transfer characteristics of a liquid piston compression process are effective in reducing the increase in air temperature that occurs during the compression process. The results also suggest that it may be possible to achieve a near-isothermal process with a fully optimized liquid piston compression system.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Reference18 articles.

1. System and method for rapid isothermal gas expansion and compression for energy storage;Bollinger,2010

2. Development of a reciprocating compressor using water injection to achieve quasi-isothermal compression;Coney;Proceedings of the 16th International Compressor Engineering Conference,2002

3. Seasonal energy storage in a renewable energy system;Converse;Proc IEEE,2012

4. Flow of fluids through valves, fittings, and pipe,1988

5. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange;Fong,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3