Robotic Models for Studying Undulatory Locomotion in Fishes

Author:

Lauder George V.,Lim Jeanette,Shelton Ryan,Witt Chuck,Anderson Erik,Tangorra James L.

Abstract

AbstractMany fish swim using body undulations to generate thrust and maneuver in three dimensions. The pattern of body bending during steady rectilinear locomotion has similar general characteristics in many fishes and involves a wave of increasing amplitude passing from the head region toward the tail. While great progress has been made in understanding the mechanics of undulatory propulsion in fishes, the inability to control and precisely alter individual parameters such as oscillation frequency, body shape, and body stiffness, and the difficulty of measuring forces on freely swimming fishes have greatly hampered our ability to understand the fundamental mechanics of the undulatory mode of locomotion in aquatic systems. In this paper, we present the use of a robotic flapping foil apparatus that allows these parameters to be individually altered and forces measured on self-propelling flapping flexible foils that produce a wave-like motion very similar to that of freely swimming fishes. We use this robotic device to explore the effects of changing swimming speed, foil length, and foil-trailing edge shape on locomotor hydrodynamics, the cost of transport, and the shape of the undulating foil during locomotion. We also examine the passive swimming capabilities of a freshly dead fish body. Finally, we model fin-fin interactions in fishes using dual-flapping foils and show that thrust can be enhanced under correct conditions of foil phasing and spacing as a result of the downstream foil making use of vortical energy released by the upstream foil.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3