Interactions Between Microorganisms and Marine Microplastics: A Call for Research

Author:

Harrison Jesse P.,Sapp Melanie,Schratzberger Michaela,Osborn A. Mark

Abstract

AbstractSynthetic thermoplastics constitute the majority by percentage of anthropogenic debris entering the Earth’s oceans. Microplastics (≤5-mm fragments) are rapidly emerging pollutants in marine ecosystems that may transport potentially toxic chemicals into macrobial food webs. This commentary evaluates our knowledge concerning the interactions between marine organisms and microplastics and identifies the lack of microbial research into microplastic contamination as a significant knowledge gap. Microorganisms (bacteria, archaea, and picoeukaryotes) in coastal sediments represent a key category of life with reference to understanding and mitigating the potential adverse effects of microplastics due to their role as drivers of the global functioning of the marine biosphere and as putative mediators of the biodegradation of plastic-associated additives, contaminants, or even the plastics themselves. As such, research into the formation, structure, and activities of microplastic-associated microbial biofilms is essential in order to underpin management decisions aimed at safeguarding the ecological integrity of our seas and oceans.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Cited by 183 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3