Modeling of Artificial Aurelia aurita Bell Deformation

Author:

Joshi Keyur B.,Villanueva Alex,Smith Colin F.,Priya Shashank

Abstract

AbstractRecently, there has been significant interest in developing underwater vehicles inspired by jellyfish. One of these notable efforts includes the artificial Aurelia aurita (Robojelly). The artificial A. aurita is able to swim with similar proficiency to the A. aurita species of jellyfish even though its deformation profile does not completely match the natural animal. In order to overcome this problem, we provide a systematic finite element model (FEM) to simulate the transient behavior of the artificial A. aurita vehicle utilizing bio-inspired shape memory alloy composite (BISMAC) actuators. The finite element simulation model accurately captures the hyperelastic behavior of EcoFlex (Shore hardness-0010) room temperature vulcanizing silicone by invoking a three-parameter Mooney-Rivlin model. Furthermore, the FEM incorporates experimental temperature transformation curves of shape memory alloy wires by introducing negative thermal coefficient of expansion and considers the effect of gravity and fluid buoyancy forces to accurately predict the transient deformation of the vehicle. The actual power cycle used to drive artificial A. aurita vehicle was used in the model. The overall profile error between FEM and the vehicle profile is mainly due to the difference in initial relaxed profiles.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3