Observations of Turbulent Mixing During a Nonstratification Period in the Yellow Sea

Author:

Nie YunliORCID,Luan Xin,Yang Hua,Chen Xu,Song Dalei,Liu Xiuyan,Liu Shengmei,Hiu Xianghua

Abstract

Abstract Microstructure profiling measurements collected at the continental shelf of the Yellow Sea (35°38'N, 121°20'E) from December 4 to 5, 2019, were analyzed by focusing on the characteristics of turbulent mixing in the Yellow Sea and its associated influencing factors. The vertical thermohaline structure of the water column was nonstratified during the observation period, resulting in the vertically and temporally consistent distribution of turbulence dissipation and diapycnal diffusivity. The average (in time and space) dissipation rate and diapycnal diffusivity were 2.95 × 10−8 W kg−1 and 1.86 × 10−4 m2 s−1, respectively. In the vertical distribution, intense mixing occurred near the sea surface and within the bottom layers. The temporal variation in dissipation exhibits a diurnal variation that was strongly affected by surface buoyancy flux and wind energy, and a high amount of dissipation was observed at night, with an average dissipation rate of 2.45 × 10−8 W kg−1, which was almost one order of magnitude higher than that in the daytime (3.55 × 10−9 W kg−1). The cumulative distribution functions of the dissipation rate and diapycnal diffusivity across the entire water column during the measurement period could be parameterized by a lognormal distribution model. Further analysis shows that the dissipation rate was positively related to wind speed and rotational barotropic tidal velocity. Compared with the rotating tidal current, wind-driven turbulence was able to penetrate the surface, thereby causing layer mixing throughout the entire water column (R = 0.71), and is a dominant driver of elevated turbulent mixing during wintertime.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3