Author:
Kumar Rajeev,King Justin T.,Green Melissa A.
Abstract
AbstractThe oscillation of bioinspired fin-like panels in a uniform freestream flow creates chains of vortex rings, including streamwise segments that induce significant three-dimensional effects. With increasing Strouhal number, this wake structure induces flow with increasing
nondimensional momentum, defined relative to the freestream velocity, in the downstream direction. This increase in relative momentum with increasing Strouhal number is consistent with greater nondimensional thrust production, which has been shown previously in the literature. These results
were obtained via stereoscopic particle image velocimetry water tunnel experiments at Strouhal numbers ranging from 0.17 to 0.56 downstream of a continuously pitching trapezoidal panel. Features of the wake dynamics including spanwise compression, transverse expansion, transverse wake splitting
or bifurcation, and wake breakdown are elucidated through analyses of phase-averaged as well as time-averaged velocity fields, in addition to common vortex identification methods.
Publisher
Marine Technology Society
Subject
Ocean Engineering,Oceanography
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献