Advanced ROV Autonomy for Efficient Remote Control in the DexROV Project

Author:

Di Lillo Paolo Augusto,Simetti Enrico,De Palma Daniela,Cataldi Elisabetta,Indiveri Giovanni,Antonelli Gianluca,Casalino Giuseppe

Abstract

AbstractIn this paper, we present DexROV, an EC Horizon 2020-funded project that proposes to implement novel operation strategies for underwater semiautonomous interventions. These costly and demanding operations are increasingly performed by remotely operated vehicles (ROVs), contributing to risk cutting for human divers. However, ROV operations require offshore structures, hosted on a support vessel with a crew of a significant amount of personnel necessary to properly handle and operate the robotic platform. One of the key goals of DexROV is to delocalize on shore the manned support as much as possible, reducing the crew onboard the support vessel and consequently the costs and risks of the whole operation. The control center is located onshore, far from the actual operation location. Operators interact with the ROV through a simulation environment that exploit 3D models of the environment built online relying on the perception and modeling capabilities of the robotic system and transmitted via satellite communication. Currently, ROVs lack the dexterous capabilities needed to perform many kinds of operations, for which human divers are still necessary. DexROV addresses this problem, equipping the ROV with two 6 DOF (degrees of freedom) dexterous manipulators with anthropomorphic end-effectors and providing semiautonomous capabilities. The control will rely on a multitask priority approach that will help the operator to focus on the main operation, leaving the low-level tasks to be autonomously performed by the ROV.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3