Author:
Mina Tamzidul,Singh Yogang,Min Byung-Cheol
Abstract
AbstractNumerous types of unmanned surface vehicles (USVs) are currently available for different applications with a wide spectrum of maneuvering capabilities. We present a generalized multi-USV navigation, guidance, and control framework adaptable to specific USV maneuvering
response capabilities for dynamic obstacle avoidance. The proposed method integrates offline optimal path planning with a safety distance constrained A* algorithm, and an online extended adaptively weighted (EAW) artificial potential field-based path following approach with dynamic collision
avoidance, based on USV maneuvering response times. The framework adaptively weighs inter-USV interaction, waypoint following, and collision avoidance based on USV maneuvering capabilities. The EAW system allows USVs with fast maneuvering abilities to react late and slow USVs to react sooner
to oncoming moving obstacles gradually, with a carefully designed series of repulsive potential with diminishing weighting along the predicted path of detected moving obstacles, such that a smooth path is followed by the USV group with reduced cross-track error and reduced maneuvering effort.
We emphasize the importance of such requirements in constrained and busy maritime environments such as narrow channels in busy harbors. Simulation results validate the proposed EAW artificial potential field framework for different sized multi-USV teams showing reduced cross-track error and
maneuvering effort compared to the unweighted or traditional approach, for both slow- and fast-maneuvering multi-USV teams.
Publisher
Marine Technology Society
Subject
Ocean Engineering,Oceanography
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献