The Use of Numerical Modeling to Optimize a New Wave Energy Converter Technology

Author:

Green Brandon E.,MacDonald Daniel G.

Abstract

AbstractA numerical model of a new point-absorber wave energy converter (WEC) technology was designed for simulation purposes using Python. The governing equations were defined to take into account the relevant forces on the buoy in an ideal wave environment as well as any opposing forces due to damping, the power take-off (PTO) mechanism, and alternator. These equations of motion were solved using a high-order iterative process to study the linear kinematics of the buoy, the behavior of the PTO, and the associated power output in an ideal ocean wave environment. The model allows for the adjustment of relevant parameters to explore the behavior of the WEC and optimize system efficiency depending on the wave conditions. The numerical model was designed to run single simulations for a specified time interval; however, an optimization routine was implemented to optimize the mechanical parameters that greatly affect power output. The optimization portion of the model was implemented to study the response of the virtual WEC to a variety of input conditions pertaining to the buoy, PTO, and wave dynamics. This paper explains the development of the prototype WEC and the associated numerical model, in addition to evaluating the response of the WEC to a variety of input conditions. The output of the numerical model is discussed for the associated wave field used for simulation purposes. The design and implementation of the numerical model provides insight into changes in design components to maximize system power output and efficiency. The results of the numerical model and examples of data output for specific input conditions are investigated.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3